总计假设最坏的情况,认为共享资源没超被访问的时候都会被修改(例如共享数据被修改),所以每次在获取资源操作的时候都会上锁,其他线程想要获取这个资源就会被阻塞,直至锁被释放。
也就是说,共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程。
高并发的场景下,激烈的锁竞争会造成线程阻塞,大量阻塞线程会导致系统的上下文切换,增加系统的性能开销。并且,悲观锁还可能会存在死锁问题,影响代码的正常运行。
像 Java 中 synchronized
和 ReentrantLock
等独占锁就是悲观锁思想的实现。
public void performSynchronisedTask() {
synchronized (this) {
// 需要同步的操作
}
}
private Lock lock = new ReentrantLock();
lock.lock();
try {
// 需要同步的操作
} finally {
lock.unlock();
}
乐观锁总是假设最好的情况,认为共享资源每次被访问的时候不会出现问题,线程可以不停地执行,无需加锁也无需等待,只是在提交修改的时候去验证对应的资源(也就是数据)是否被其他线程修改了(具体方法可以使用版本号机制或 CAS 算法)。
高并发的场景下,乐观锁相比悲观锁来说,不存在锁竞争造成线程阻塞,也不会有死锁的问题,在性能上往往会更胜一筹。但是,如果冲突频繁发生(写占比非常多的情况),会频繁失败和重试,这样同样会非常影响性能,导致 CPU 飙升。
不过,大量失败重试的问题也是可以解决的,像我们前面提到的 LongAdder
以空间换时间的方式就解决了这个问题。
乐观锁一般会使用版本号机制或 CAS 算法实现,CAS 算法相对来说更多一些,这里需要格外注意。
一般是在数据表中加上一个数据版本号 version
字段,表示数据被修改的次数。当数据被修改时,version
值会加一。当线程 A 要更新数据值时,在读取数据的同时也会读取 version
值,在提交更新时,若刚才读取到的 version 值为当前数据库中的 version
值相等时才更新,否则重试更新操作,直到更新成功。
举一个简单的例子:假设数据库中帐户信息表中有一个 version 字段,当前值为 1 ;而当前帐户余额字段( balance
)为 $100 。
version
=1 ),并从其帐户余额中扣除 $50( $100-$50 )。version
=1 ),并从其帐户余额中扣除 $20 ( $100-$20 )。version
=1 ),连同帐户扣除后余额( balance
=$50 ),提交至数据库更新,此时由于提交数据版本等于数据库记录当前版本,数据被更新,数据库记录 version
更新为 2 。version
=1 )试图向数据库提交数据( balance
=$80 ),但此时比对数据库记录版本时发现,操作员 B 提交的数据版本号为 1 ,数据库记录当前版本也为 2 ,不满足 “ 提交版本必须等于当前版本才能执行更新 “ 的乐观锁策略,因此,操作员 B 的提交被驳回。这样就避免了操作员 B 用基于 version
=1 的旧数据修改的结果覆盖操作员 A 的操作结果的可能。