递归函数

定义

def fact(n):
    if n==1:
        return 1
    return n * fact(n - 1)

函数递归的底层实现

<aside> ⚠️ 使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。

</aside>

尾递归优化(不会导致栈溢出)

解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。

尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。

上面的fact(n)函数由于return n * fact(n - 1)引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:

deffact(n):
return fact_iter(n, 1)

deffact_iter(num, product):
if num == 1:
return product
return fact_iter(num - 1, num * product)

可以看到,return fact_iter(num - 1, num * product)仅返回递归函数本身,num - 1num * product在函数调用前就会被计算,不影响函数调用。

遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n) 函数改成尾递归方式,也会导致栈溢出。